THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Solution of Tutorial Classwork 6

- (⇒) Let {U_α}_α be an open cover of the Z in (X, ℑ). Then {U_α ∩ Y}_α is an open cover of Z in (Y, ℑ_Y). By compactness of Z in (Y, ℑ_Y), there exists a finite subcover {U_i ∩ Y}_{i=1}ⁿ of Z. Since Z ⊂ Y, {U_i}_{i=1}ⁿ is a finite subcover of Z in (X, ℑ). Hence Z is compact in (X, ℑ).
 (⇐) Let {V_α}_α be an open cover of the Z in (Y, ℑ_Y). Since V_α ∈ ℑ_Y, we have V_α = W_α ∩ Y for some W_α ∈ ℑ. Then {W_α}_α is an open cover of Z in (X, ℑ). By compactness of Z in (X, ℑ), there exists a finite subcover {W_i}_{i=1}ⁿ of Z. Since Z ⊂ Y, {W_i ∩ Y}_{i=1}ⁿ is a finite subcover of Z in (Y, ℑ_Y).
- By Q)1), it suffices to show that C₁ ∩ C₂ is compact in (C₁, ℑ|_{C1}). Note that C₁ is compact. Hence it suffices to show that C₁ ∩ C₂ is closed in (C₁, ℑ|_{C1}).

Since C_1 and C_2 are compact sets in the Hausdorff space X, C_1 and C_2 are closed in X. Therefore, $C_1 \cap C_2$ is closed in X. This implies that $C_1 \cap C_2$ is closed in C_1 . Hence $C_1 \cap C_2$ is compact.

3. * For each $n \in \mathbb{N}$, consider the open cover $\{B(x, \frac{1}{n}) \mid x \in X\}$. By compactness of X, there exists a finite subcover $\{B(x_l^{(n)}, \frac{1}{n})\}_{l=1}^{k_n}$ of X. Consider the set $D = \{x_l^{(n)} \mid n \in \mathbb{N}, l = 1, 2, \dots, k_n\}$. We want to show that D is a countable dense set. Since D is countable union of finite sets, it is countable. Furthermore, pick any point $x \in X$ and consider any open ball B(x, r) centered at x with radius r. Choose n_0 such that $\frac{1}{n_0} < r$. Consider the open cover $\{B(x_l^{(n_0)}, \frac{1}{n_0})\}_{l=1}^{k_{n_0}}$ of X. Since it is an open cover, there exists some point $x_{l_0}^{(n)}$ such that $x \in B(x_{l_0}^{(n)}, \frac{1}{n_0})$. Hence $d(x, x_{l_0}^{(n)}) < \frac{1}{n_0} < r$ and $x_{l_0}^{(n)} \in B(x, r)$. This shows that D is a dense set.